metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[4-(dimethylamino)pyridinium] tetrabromidodiphenylplumbate(IV)

Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 8 August 2008; accepted 27 August 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.006 Å; R factor = 0.029; wR factor = 0.075; data-to-parameter ratio = 20.4.

The Pb^{IV} atom of the anion of the title salt, $(C_7H_{11}N_2)_2$ -[PbBr₄(C_6H_5)₂], is situated on a crystallographic center of inversion and exhibits a tetragonally compressed octahedral coordination. One of the two independent Br atoms acts as a hydrogen-bond acceptor towards the NH group of the cation.

Related literature

For the structure of isostructural bis(4-dimethylaminopyridinium) tetrabromidodiphenylstannate, see: Yap *et al.* (2008).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C_7H_{11}N_{2}})_2 [{\rm PbBr_4}({\rm C_6H_5})_2] \\ M_r = 927.39 \\ {\rm Monoclinic}, \ P2_1/n \\ a = 9.4994 \ (8) \ {\rm A} \\ b = 13.882 \ (1) \ {\rm \AA} \\ c = 10.991 \ (1) \ {\rm \AA} \\ \beta = 92.998 \ (1)^\circ \end{array}$

 $V = 1447.3 \text{ (2) } \text{\AA}^{3}$ Z = 2Mo K\alpha radiation $\mu = 11.37 \text{ mm}^{-1}$ T = 100 (2) K $0.22 \times 0.08 \times 0.06 \text{ mm}$

Data collection

Bruker SMART APEX

```
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{min} = 0.246, T_{max} = 0.549
(expected range = 0.226–0.505)
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	162 parameters
$wR(F^2) = 0.074$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 1.21 \text{ e } \text{\AA}^{-3}$
3309 reflections	$\Delta \rho_{\rm min} = -1.70 \text{ e } \text{\AA}^{-3}$

8227 measured reflections

 $R_{\rm int} = 0.029$

3309 independent reflections

2879 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

b1-C1	2.190 (5)	Pb1-Br2	2.8897 (5)
b1-Br1	2.8516 (5)		

Table 2

F

F

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N2-H2 n ···Br1	0.88	2.52	3.254 (4)	142

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

We thank the University of Malaya for funding this study (SF022155/2007 A) and also for the purchase of the diffract-ometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2080).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2008). publCIF. In preparation.

Yap, Q. L., Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m696.

supplementary materials

Acta Cryst. (2008). E64, m1222 [doi:10.1107/S1600536808027530]

Bis[4-(dimethylamino)pyridinium] tetrabromidodiphenylplumbate(IV)

K. M. Lo and S. W. Ng

Comment

In an earlier study, the tin-alkyl and one tin-aryl bond of an alkyltriphenyltin compound could be cleaved by 4-dimethylaminopyridine hydrobromide perbromide to form bis(4-dimethylaminopyridinium) tetrabromidodiphenylstannate (Yap *et al.*, 2008). In the present study, the organic reagent similarly cleaves two lead-carbon bonds to afford the corresponding plumbate (Scheme I, Fig. 1). The two compounds are isostructural.

Experimental

Tetraphenyllead (1.55 g, 3 mmol) and 4-dimethylaminopyridinium hydrobromide perbromide (1.1 g, 3 mmol) were heated in chloroform (100 ml) for 3 h. The filtered solution when allowed to evaporate yielded large colorless crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to $1.5U_{eq}(C)$. The ammonium H atom was similarly constrained (N–H 0.88 Å).

The difference Fourier map had large peaks/deep holes near the lead atom.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) plot of $(C_7H_{11}N)_2$ [PbBr₄(C₆H₅)₂] at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Bis[4-(dimethylamino)pyridinium] tetrabromidodiphenylplumbate(IV)

Crystal data	
$(C_7H_{11}N_2)_2$ [PbBr ₄ $(C_6H_5)_2$]	$F_{000} = 876$
$M_r = 927.39$	$D_{\rm x} = 2.128 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 3449 reflections
a = 9.4994 (8) Å	$\theta = 2.3 - 28.3^{\circ}$
b = 13.882(1) Å	$\mu = 11.37 \text{ mm}^{-1}$
c = 10.991 (1) Å	T = 100 (2) K

 $\beta = 92.998 (1)^{\circ}$ $V = 1447.3 (2) \text{ Å}^3$ Z = 2

Data collection

Bruker SMART APEX diffractometer	3309 independent reflections
Radiation source: fine-focus sealed tube	2879 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.029$
T = 100(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.246, \ T_{\max} = 0.549$	$k = -17 \rightarrow 18$
8227 measured reflections	$l = -14 \rightarrow 14$

Prism, colorless

 $0.22\times0.08\times0.06~mm$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.074$	$w = 1/[\sigma^2(F_o^2) + (0.0374P)^2 + 3.9748P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.001$
3309 reflections	$\Delta \rho_{max} = 1.21 \text{ e} \text{ Å}^{-3}$
162 parameters	$\Delta \rho_{min} = -1.70 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Pb1	0.5000	0.5000	0.5000	0.00948 (8)
Br1	0.55832 (5)	0.61261 (3)	0.29156 (5)	0.01773 (12)
Br2	0.76243 (5)	0.40245 (3)	0.46044 (4)	0.01405 (11)
N1	1.1998 (4)	0.5912 (3)	-0.0112 (4)	0.0149 (8)
N2	0.8888 (4)	0.5868 (3)	0.2341 (4)	0.0195 (9)
H2n	0.8188	0.5819	0.2831	0.023*
C1	0.6145 (5)	0.6028 (3)	0.6196 (4)	0.0122 (9)
C2	0.5516 (5)	0.6319 (3)	0.7245 (4)	0.0138 (9)
H2	0.4624	0.6071	0.7443	0.017*
C3	0.6230 (5)	0.6988 (3)	0.8006 (4)	0.0171 (10)
H3	0.5821	0.7202	0.8728	0.021*
C4	0.7539 (5)	0.7339 (3)	0.7703 (4)	0.0163 (10)
H4	0.8019	0.7795	0.8219	0.020*
C5	0.8145 (5)	0.7028 (3)	0.6654 (4)	0.0161 (10)

Н5	0.9041	0.7269	0.6455	0.019*
C6	0.7450 (5)	0.6367 (3)	0.5894 (4)	0.0136 (9)
H6	0.7864	0.6150	0.5175	0.016*
C7	0.8774 (5)	0.6473 (4)	0.1383 (5)	0.0209 (11)
H7	0.7961	0.6869	0.1276	0.025*
C8	0.9792 (5)	0.6529 (3)	0.0567 (5)	0.0162 (10)
H8	0.9691	0.6961	-0.0102	0.019*
C9	1.1018 (5)	0.5936 (3)	0.0715 (4)	0.0115 (9)
C10	1.1123 (5)	0.5358 (4)	0.1782 (4)	0.0164 (10)
H10	1.1945	0.4981	0.1952	0.020*
C11	1.0064 (5)	0.5337 (4)	0.2559 (5)	0.0189 (10)
H11	1.0150	0.4944	0.3266	0.023*
C12	1.1934 (6)	0.6536 (4)	-0.1184 (5)	0.0235 (12)
H12A	1.0949	0.6696	-0.1405	0.035*
H12B	1.2346	0.6201	-0.1865	0.035*
H12C	1.2463	0.7129	-0.1001	0.035*
C13	1.3293 (5)	0.5345 (4)	0.0087 (5)	0.0195 (10)
H13A	1.3939	0.5682	0.0667	0.029*
H13B	1.3744	0.5264	-0.0688	0.029*
H13C	1.3061	0.4712	0.0416	0.029*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb1	0.01089 (12)	0.01025 (12)	0.00716 (12)	-0.00156 (9)	-0.00091 (8)	-0.00108 (9)
Br1	0.0182 (2)	0.0185 (2)	0.0164 (2)	0.00011 (18)	0.00039 (19)	0.00211 (19)
Br2	0.0142 (2)	0.0158 (2)	0.0120 (2)	0.00186 (17)	-0.00032 (18)	-0.00038 (17)
N1	0.018 (2)	0.0146 (19)	0.012 (2)	0.0033 (16)	0.0018 (17)	0.0019 (16)
N2	0.018 (2)	0.025 (2)	0.016 (2)	-0.0001 (18)	0.0063 (18)	-0.0024 (18)
C1	0.014 (2)	0.011 (2)	0.011 (2)	-0.0021 (17)	-0.0035 (18)	0.0002 (17)
C2	0.015 (2)	0.013 (2)	0.014 (2)	0.0022 (18)	0.0000 (19)	0.0002 (18)
C3	0.022 (2)	0.018 (2)	0.011 (2)	0.003 (2)	-0.003 (2)	-0.0025 (19)
C4	0.023 (3)	0.009 (2)	0.016 (3)	-0.0022 (19)	-0.008 (2)	-0.0004 (18)
C5	0.016 (2)	0.016 (2)	0.016 (2)	-0.0037 (19)	-0.004 (2)	0.0035 (19)
C6	0.020 (2)	0.015 (2)	0.005 (2)	-0.0030 (19)	-0.0028 (18)	0.0005 (18)
C7	0.016 (2)	0.021 (3)	0.025 (3)	0.006 (2)	-0.005 (2)	-0.005 (2)
C8	0.019 (2)	0.016 (2)	0.013 (2)	0.0049 (19)	-0.002 (2)	0.0004 (19)
C9	0.013 (2)	0.011 (2)	0.011 (2)	-0.0004 (17)	-0.0021 (18)	-0.0026 (17)
C10	0.018 (2)	0.019 (2)	0.012 (2)	-0.001 (2)	-0.003 (2)	0.000 (2)
C11	0.019 (2)	0.023 (2)	0.015 (3)	-0.001 (2)	-0.001 (2)	-0.001 (2)
C12	0.030 (3)	0.023 (3)	0.018 (3)	0.004 (2)	0.003 (2)	0.008 (2)
C13	0.013 (2)	0.027 (3)	0.018 (3)	0.005 (2)	0.000 (2)	-0.003 (2)

Geometric parameters (Å, °)

Pb1—C1	2.190 (5)	C4—H4	0.9500
Pb1—C1 ⁱ	2.190 (5)	C5—C6	1.385 (6)
Pb1—Br1	2.8516 (5)	С5—Н5	0.9500

supplementary materials

Pb1—Br1 ⁱ	2.8516 (5)	С6—Н6	0.9500
Pb1—Br2 ⁱ	2.8897 (5)	С7—С8	1.356 (7)
Pb1—Br2	2.8897 (5)	С7—Н7	0.9500
N1—C9	1.335 (6)	С8—С9	1.428 (6)
N1—C13	1.467 (6)	С8—Н8	0.9500
N1—C12	1.461 (6)	C9—C10	1.420 (7)
N2—C7	1.347 (7)	C10—C11	1.353 (7)
N2—C11	1.349 (7)	C10—H10	0.9500
N2—H2n	0.8800	C11—H11	0.9500
C1—C6	1.383 (6)	C12—H12A	0.9800
C1—C2	1.386 (6)	C12—H12B	0.9800
C2—C3	1.401 (7)	C12—H12C	0.9800
C2—H2	0.9500	C13—H13A	0.9800
C3—C4	1.392 (7)	C13—H13B	0.9800
С3—Н3	0.9500	C13—H13C	0.9800
C4—C5	1.384 (7)		
C1—Pb1—C1 ⁱ	180.00 (17)	C6—C5—C4	120.2 (4)
C1—Pb1—Br1	90.79 (12)	С6—С5—Н5	119.9
C1 ⁱ —Pb1—Br1	89.21 (12)	C4—C5—H5	119.9
C1—Pb1—Br1 ⁱ	89.21 (12)	C1—C6—C5	119.1 (4)
C1 ⁱ —Pb1—Br1 ⁱ	90.79 (12)	С1—С6—Н6	120.4
Br1—Pb1—Br1 ⁱ	180.000 (16)	С5—С6—Н6	120.4
C1—Pb1—Br2 ⁱ	90.55 (12)	C8—C7—N2	121.5 (5)
C1 ⁱ —Pb1—Br2 ⁱ	89.45 (12)	С8—С7—Н7	119.3
Br1—Pb1—Br2 ⁱ	93.978 (14)	N2—C7—H7	119.3
Br1 ⁱ —Pb1—Br2 ⁱ	86.022 (14)	C7—C8—C9	119.8 (5)
C1—Pb1—Br2	89.45 (12)	С7—С8—Н8	120.1
C1 ⁱ —Pb1—Br2	90.55 (12)	С9—С8—Н8	120.1
Br1—Pb1—Br2	86.022 (14)	N1—C9—C10	121.8 (4)
Br1 ⁱ —Pb1—Br2	93.978 (14)	N1—C9—C8	122.0 (4)
Br2 ⁱ —Pb1—Br2	180.0	C10—C9—C8	116.2 (4)
C9—N1—C13	121.4 (4)	C11—C10—C9	120.7 (5)
C9—N1—C12	122.2 (4)	C11—C10—H10	119.7
C13—N1—C12	115.9 (4)	С9—С10—Н10	119.7
C7—N2—C11	120.7 (4)	C10-C11-N2	120.8 (5)
C7—N2—H2n	119.6	C10-C11-H11	119.6
C11—N2—H2n	119.6	N2—C11—H11	119.6
C6—C1—C2	122.1 (4)	N1—C12—H12A	109.5
C6—C1—Pb1	120.1 (3)	N1—C12—H12B	109.5
C2—C1—Pb1	117.8 (3)	H12A—C12—H12B	109.5
C1—C2—C3	118.2 (4)	N1—C12—H12C	109.5
C1—C2—H2	120.9	H12A—C12—H12C	109.5
С3—С2—Н2	120.9	H12B—C12—H12C	109.5
C4—C3—C2	120.0 (4)	N1—C13—H13A	109.5
С4—С3—Н3	120.0	N1—C13—H13B	109.5
С2—С3—Н3	120.0	H13A—C13—H13B	109.5

C5—C4—C3	120.4 (4)	N1—C13—H13C	109.5
С5—С4—Н4	119.8	H13A—C13—H13C	109.5
C3—C4—H4	119.8	H13B—C13—H13C	109.5
Br1—Pb1—C1—C6	-46.0 (4)	Pb1—C1—C6—C5	179.0 (3)
Br1 ⁱ —Pb1—C1—C6	134.0 (4)	C4—C5—C6—C1	0.2 (7)
Br2 ⁱ —Pb1—C1—C6	-140.0 (4)	C11—N2—C7—C8	3.9 (8)
Br2—Pb1—C1—C6	40.0 (4)	N2-C7-C8-C9	0.1 (8)
Br1—Pb1—C1—C2	133.8 (3)	C13—N1—C9—C10	-5.1 (7)
Br1 ⁱ —Pb1—C1—C2	-46.2 (3)	C12—N1—C9—C10	-177.1 (5)
Br2 ⁱ —Pb1—C1—C2	39.9 (3)	C13—N1—C9—C8	176.2 (4)
Br2—Pb1—C1—C2	-140.1 (3)	C12—N1—C9—C8	4.2 (7)
C6—C1—C2—C3	0.9 (7)	C7—C8—C9—N1	174.8 (5)
Pb1—C1—C2—C3	-179.0 (3)	C7—C8—C9—C10	-3.9 (7)
C1—C2—C3—C4	-0.3 (7)	N1-C9-C10-C11	-174.7 (5)
C2—C3—C4—C5	-0.2 (7)	C8—C9—C10—C11	4.0 (7)
C3—C4—C5—C6	0.3 (7)	C9-C10-C11-N2	-0.3 (8)
C2-C1-C6-C5	-0.8 (7)	C7—N2—C11—C10	-3.8 (8)
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2 <i>n</i> ···Br1	0.88	2.52	3.254 (4)	142

